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Abstract

This work studies the problem of CMOS operational am-
plifiers (OpAmps) design optimisation. The synthesis of
these amplifiers can be translated into a multiple-objective
optimisation task, in which a large number of specifications
has to be taken into account, i.e., GBW, area, power con-
sumption and others. We introduce and apply the Genetic
Algorithm [4] (GA) optimisation technique to the proposed
problem. A novel multi-objective optimisation methodology
is embedded in our genetic algorithm and we focus on the
synthesis of a standard analog operational amplifier. The
proposed methodology is very general, in the sense that
it can be applied to digital and analog VLSI design with
multiple-objectives specifications.

1.Introduction
We present a novel methodology applied to the problem

of OpAmp design optimisation, which is a problem of prac-
tical interest. Analog circuitry, though constituting only
a small part of the total area of modern chips, is usually
the limiting factor of their overall performance [5]. More-
over, the acquisition of low-power, high-speed and small-
area analog circuits is a major tendency in the electronics
industry nowadays. The use of automatic design tools to-
gether with efficient multiple-objectives optimisation algo-
rithms is, therefore, of great importance to the development
of the field.

We use the Genetic Algorithms optimisation tech-
nique[4] in this problem. Genetic Algorithms or GAs have
already been employed in many CAD applications[2]. This
search technique can be successfully applied to a class of
optimisation problems in which the search space is too large
to be sampled by conventional techniques. In the particular
context of this application, the GA will performcell sizing,
i.e., search for transistors sizes, biasing current and com-
pensating capacitance values in order to meet a set of speci-
fications. It is shown that this task involves sampling a large
search space and, furthermore, it is a highly multi-objective

problem: a compromise among gain, dissipation, area and
other factors must be achieved.

The authors apply a novel methodology to handle multi-
objective optimisation problems using Genetic Algorithms.
This methodology is tested in the synthesis of a standard
Miller OTA cell and our results are compared with a human
made design.

This work consists of four additional sections: section
2 describes the problem of CMOS operational amplifiers
synthesis; section 3 describes the methodology used by the
authors to cope with the problem; section 4 presents the case
study and section 5 concludes the work.

2. OpAmp Design Optimisation
Whereas in bipolar based circuits the designer’s creativ-

ity is used in the conception of different topologies, in the
case of CMOS design the creativity is used to set the transis-
tors’ sizes of a particular topology, and, as a consequence, to
select also the transistors’ operating regions[6]. By search-
ing for a particular set of transistor sizes and biasing cur-
rents, the GA determines the transistor operating regions.
MOS transistors may operate instrong, weak and moderate
inversion[5]. The transition current from the weak to strong
inversion region is defined by the following equation:

ID = 2:n�(UT )
2 (1)

where � is proportional to the transistor dimensions
W/L, UT is the thermal voltage (26 mV at 300k) andn is
usually around 1.3. This equation makes explicit the re-
lationship between the transistor’s sizes and its operating
regions.

In the particular case of OpAmp design optimisation, a
large set of specifications must be achieved by the design
process[6]. Ideally, all the OpAmp specifications should
be included, but, usually, only the most important ones are
taken into account. Human design relies on the solution of a
system of equations; the main problem with this methodol-
ogy stems from the fact that there is not an exact solution to
the system when many objectives are taken into account. In
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Figure 1. Basic Genetic Algorithm flow

this case, OpAmp design is more easily viewed as a search
task.

3. Optimisation Methodology
Due to the size of the search space and to the multi-

objective nature of the problem, the authors decided to use
genetic algorithms to perform the task.

GAs carry out optimisation through biological evolution
simulation [2]. Instead of focusing on just one potential so-
lution, GAs sample a population of potential solutions. A
population of individuals is, initially, randomly generated.
Each individual is a string that encodes, by means of a par-
ticular mapping, a potential solution to the problem. The
GA performs then operations ofselection, crossoverand
mutationon the individuals, corresponding respectively to
the principals of survival of the fittest, recombination of ge-
netic material and random mutation observed in nature[4].
The selectionstep is probabilistic, but it favours individu-
als which have been assigned higherfitnessindexes in the
fitness evaluation step, performed beforehand. The fitness
is a scalar measure of the individual performance. The
crossoveroperator splices the contents of two strings and
is the main driving force of the GA; themutationoperator
changes, with low probability, a particular string position,
and it is regarded as a background operator. The optimisa-
tion process is carried out through the generation of succes-
sive populations until a stop criteria is met. The basic GA
flow is illustrated in Figure 1.

The following sections examine therepresentationand
themulti-objective fitness assignmentused in our GA. The
other GA parameters have been chosen according to classi-
cal GA references, and further details can be found in [4].

3.1 Representation
Each genetic algorithm string (also called individual or

genotype) is made up of integer numbers encoding a partic-
ular sized OpAmp. The genotype positions are the values
of the transistor sizes, biasing current and, if it is the case,
compensating capacitor. This representation is illustrated in
Figure 2.

This representation uses a minimum amount of designer
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Figure 2. OpAmp representation

knowledge. We have only constrained the differential in-
put transistors to be equally sized, to avoid meaningless
OpAmps. Furthermore, the transistors dimensions and bi-
asing current were limited to reasonable values, i.e.,W >
Wmin andL > Lmin. More specifically, we allowed W
and L to take a hundred discrete values, fromWmin (Lmin)
to Wmin + 100 (Lmin + 100). The biasing current,Ib, and
the compensating capacitance,Cp, have also been allowed
to take a hundred different values in the following way:

1:5�A � Ib � 2:5�A; step 0:01�A (2)

0:1pF � Cp � 10pF; step 0:1pF (3)

For standard OpAmp cells, it will be shown that this en-
coding results in a search space of the order of1030 possible
solutions, which is in the range of GA applications [2].

3.2 Multi-Objective Evaluation Function
The main challenge of applying genetic algorithms or

any other optimisation technique to this problem is the
multi-objective nature of the same. The problem of multi-
objective optimisation concerns the need to integrate vec-
torial performance measures with the inherently scalar way
in which most optimisation techniques rewards individual
performance[3].

Two types of multi-objective optimisation approaches
can be identified[3]: Plain aggregating approaches, consist-
ing of the popular weighted-sum equation and Pareto-Based
approaches, which use the Pareto concept of dominance[3].

Particularly, CAD problems are intrinsically multi-
objective [2] and some tools have been developed to handle
applications in the area. The software EXPLORER [1] is
a GA based tool that minimises chip layout area, deviation
from a target aspect ratio, routing congestion and maximum
path delay in VLSI cells; these four objectives are handled
through a Pareto based approach.

The authors applied the plain aggregating approach in
this work, since it produced better results than the Pareto
methodology in this particular application. The main prob-
lem of the aggregating methodology is the setting of the
weights associated to each objective. In order to overcome



this problem, we used adaptive weights along the optimi-
sation process, in the sense that their values will be up-
dated according tothe average fitness value with respect to
each objective and to the user specification for each objec-
tive. The following set of equations summarises our multi-
objective evaluation strategy. We will refer to fitness as the
score achieved by a circuit regarding to a particular objec-
tive, while the overall fitness is the aggregation of all objec-
tives’ scores.

Overall Fitness=
nX

i=1

wiFni (4)

Fni =
Fi
�Fi

(5)

wi =
100 useri

�Fi
; if �Fi < accepi (6)

wi =
10 useri

�Fi
; if accepi < �Fi < useri (7)

wi = 1; if �Fi > useri (8)

if objectivei is to be maximised, or:

wi = �
100 �Fi
useri

; if �Fi > accepi (9)

wi = �
10 �Fi
useri

; if accepi > �Fi > useri (10)

wi = �1; if �Fi < useri (11)

if objectivei is to be minimised.
Equation 4 shows the overall fitness expression, which

aggregates the fitness corresponding to all the objectives.n
is the number of objectives,wi is the weight vector andFni
is the normalised fitness vector.

The normalised fitness vector,Fni, is given by equation
5 as the ratio between the actual scored fitness with respect
to objectivei, Fi, and the respective average fitness value
over all individuals in the population,�Fi. The normalisation
is to account for the fact that the objectives are measured in
different units and all of them must have the same influence
in the overall fitness.

The weight vector expression is defined from equations
6 to 11. If a particular objective is to be maximised, its
weight is defined as the ratio between the desired specifica-
tion, useri, and the current average fitness value�Fi, for a
particular objectivei. This ratio is multiplied by an amplifi-
cation factor; this factor is set to 100 when�Fi is lower than
a minimal acceptable value,Accepi, defined by the user;
and it is set to 10 if�Fi is acceptable, but still not comply-
ing with the user specificationuseri. If the objective is to

be minimised, its weight takes a negative value and the pre-
vious ratio is inverted. The amplification factor enhances
the influence of the weightwi as long as the objective is
not satisfied. When the objective is satisfied (�Fi > useri
for maximisation and�Fi < useri for minimisation), the
weight is set to the unit.

Summarising this technique, the idea is to assign large
weights to objectives for which the average fitness is far
from the target value, and low weights to objectives whose
average values are around the desired ones. The search will
then be driven by unsatisfied design requirements.

4. Case Study
The authors chose the Miller OTA amplifier cell to show

the effectiveness of the proposed methodology. The Miller
OTA is a two stage amplifier, whose compensation capaci-
tance acts as a Miller capacitance, and presents a low output
impedance for most of its frequency range[6]. We apply the
multi-objectivestrategy defined previously to optimise gain,
GBW, linearity, power consumption, area1, phase margin
(PM) and slew-rate (SR)2. Except for the slew-rate, all the
performance statistics have been directly measured. The
direct measure of the slew-rate along the GA execution is
computationally expensive, because it requires a transient
analysis. The slew-rate has then been estimated by the fol-
lowing equation:

Slew � Rate =
IT5 � IB

CL
(12)

This is called external slew-rate, because it is related to
the output capacitanceCL[6]. Only the final slew-rate val-
ues are actually measured. Linearity is taken into account
by minimising the bias voltage in the output when both in-
put voltages are grounded.

The GA manipulates the transistors’ sizes, biasing cur-
rent, Ib, and compensation capacitance,Cp, according to
equations 2 and 3 respectively. Table 1 provides a com-
parison among a human made design (HM) [6] and two
evolved cells (Cel1 and Cel2). The search space size tackled
by the Genetic Algorithm, S.P., is also given by this table.

The vector of acceptable values, in the form (Minimum
Gain, Minimum GBW, Maximum Bias Voltage, Maximum
Consumption, Maximum Area, Minimum Phase Margin,
Minimum Slew-Rate), has been set to (60dB, 1MHz, 0.2V
bias, 400�W, 5,000�m2, 55o, 1V/�s) and the vector of
desired values has been set to (70dB, 2MHz, 0.1V bias, 200
�W, 2,000�m2, 70o, 3V/�s). It can be seen that both Cel1
and Cel2 comply with the acceptable values and, in many
respects, comply with the desired values, which have been
selected at hard specifications. From Table 1, it can be seen

1The Miller capacitance has not been taken intoaccount in the area
calculation

2Both positive and negative slew-rate have been calculated; the table
shows the worst value between them



Features H.M. Cel1 Cel2
S.P. — 10

24
10

24

Gain 71.2dB 72.5dB 68.6dB
GBW 2MHz 1.9MHz 1 MHz
Bias -0.65mV -1.64mV -0.56mV
Offset -54.3mV -0.14V -42.1mV
SR 2.2 V/�s 2.3 V/�s 0.8 V/�s
Ib 2.5�A 1.9�A 1.9�A
Cp 1 pF 2.05 pF 2.8 pF
Vcc 2.5V 2.5V 2.5V
Dissip. 527.8�W 330�W 172:1�W
Area 1,929.4�m2 2,300�m2 5,380�m2

PM 65
o

52
o

60
o

Tech. 3� n-well 3 � n-well 3� n-well
RL 100k 100k 100k
CL 10pF 10pF 10pF

Table 1. Comparison among hand-made and
evolved Miller OTA OpAmps

that Cel1 arrives at values akin to the ones observed in the
hand-made design, presenting, though, a lower power con-
sumption value. Cel 2 presents a power consumption much
smaller than the other cells at the expense of a larger area
and lower slew-rate. It is up to the user to choose which
evolved cell suits for the particular application.

Figure 3 displays two of the three cells shown in the
previous table. From this figure, it can be seen that transistor
pairs (T1, T2), (T3, T4) and (T7, T8) have been constrained
to have equal sizes, as in hand made design. It has been
verified that the evolved designs followed the hand made
one in the following respects:

1. High value of(W=L)6, since transistor T6 provides
gain [6];

2. High value of(W=L)5, which improves the output
swing, hence, the slew rate;

3. (W=L)1 > 1, since transistor T1 also provides gain.

The GA arrived at these strategies without any kind of
previous knowledge being supplied to the system.

The evolution of the Miller capacitance has been im-
portant to achieve stability requirements. This capacitance
determines the amplifier dominant pole, BW. A guideline
for stability requirements is to keep the non-dominant pole
around 3 x GBW.

We used the level 2 transistor model in the SMASH sim-
ulator [7] in this case study, with parasitic capacitances be-
ing taken into account (the complete set of used transistors
parameters may be found in [6]). The proposed methodol-
ogy has also been applied to low-power OpAmp design and
results can be found in [8].
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Figure 3. Miller OTA : (A) - Hand Made (B) -
Cel1

5. Conclusions
We presented a tool that performs automatic synthesis of

operational amplifiers using minimal human knowledge. It
has been verified that the automatic tool produced results
competitive with human designed cells, following standard
design strategies.

Our methodology has the potential to be applied in a
broad scope of VLSI design problems, ranging from low-
power analog design [8] to digital design, for which less
objectives, comparing to analog design, have to be taken
into account.
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